Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Lilianna Chęcińska, ${ }^{\text {a }}$ Magdalena Małecka, ${ }^{\text {a }}$ Justyn Ochocki ${ }^{\text {b }}$ and Urszula Kalinowska ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Crystallography and Crystal Chemistry, University of Łódź, Pomorska 149/153, 90-236 Łódź, Poland, and ${ }^{\text {b }}$ Department of Bioinorganic Chemistry, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland

Correspondence e-mail: lilach@uni.lodz.pl

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
Some non-H atoms missing
Disorder in main residue
R factor $=0.046$
$w R$ factor $=0.120$
Data-to-parameter ratio $=17.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
-

[^0]
trans-Bis(1 H-benzimidazol-2-ylmethyl- κN^{3} diethyl phosphate)dichloropalladium(II) monohydrate

The title compound, trans- $\left[\mathrm{PdCl}_{2}(2 \text {-bimOpe })_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, where 2-bimOpe is 1 H -benzimidazol-2-ylmethyl diethyl phosphate $\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}\right)$, crystallizes as a monohydrate. The most satisfactory structure refinement was obtained by eliminating the solvent contribution from the intensity data and the solvent-free model was employed for the final refinement. The Pd atom possesses a square-planar geometry in a centrosymmetric trans configuration.

Comment

Although only a few platinum compounds, viz. cisplatin [cisdiamminedichloroplatinum(II)], carboplatin, oxaliplatin and nedaplatin, have been used as antitumor agents in clinical treatments, a variety of studies in this field have been carried out (Jakupec et al., 2003; Wong \& Giandomenico, 1999). The utility of these drugs is limited by severe side effects, e.g. gastrointestinal toxicity, and neuro- and nephrotoxicity, the narrow range of tumors in which they are efficient, and low bioavailability (Ferguson \& Pearson, 1996).

Platinum(II) and palladium(II) complexes that carry nitrogen-containing ligands are the subject of intensive biological evaluation in the search for antitumor agents with a superior therapeutic index to cisplatin. Palladium(II) complexes with dialkyl α-anilinobenzylphosphonates (TušekBožić et al., 1995; Curić et al., 1996), quinolylmethylphosphonates (Tušek-Božic et al., 1991), coumarin-derived ligands (Budzisz et al., 2004), pyrazoles and β-carboline alkaloids (AlAllaf \& Rashan, 2001) have been tested against tumor cell lines, and in some cases exhibited remarkable activity. Recently, platinum(II) complexes with 2-substituted benzimidazole ligands have been described and shown to be cytotoxically and mutagenically active (Gumus, Algul et al., 2003; Gumus, Demirci et al., 2003; Gumus, Pamuk et al., 2003).

The above-mentioned results encouraged us to synthesize the palladium(II) complex of 1 H -benzimidazol-2-ylmethyl diethyl phosphate, $\left[\mathrm{PdCl}_{2}(2 \text {-bimOpe })_{2}\right]$, (I). We have chosen phosphate derivatives of benzimidazole as ligands, because the benzimidazole residue is found in a variety of naturally occurring compounds such as vitamin B_{12} and its derivatives, and it is structurally similar to purine bases. Our interest in benzimidazoles has also been stimulated by their promising pharmacological properties, such as anticancer activity (Hawash et al., 1999) and inhibition of nucleic acid synthesis (Bucknall \& Carter, 1967). On the other hand, many phosphate derivatives show various biological properties (Sigel \& Kapinos, 2000).

Received 20 September 2004 Accepted 23 September 2004 Online 9 October 2004

(I)

Compound (I) crystallizes as a monohydrate. The water molecule appears to be highly disordered, and it was difficult to model its position and distribution reliably. Therefore, the SQUEEZE function of PLATON (van der Sluis \& Spek, 1990; Spek, 2001) was used to eliminate the contribution of the electron density in the solvent region from the intensity data, and the solvent-free model was employed for the final refinement (see Experimental section).

The molecular structure of (I), with the atom-numbering scheme, is shown in Fig. 1. The Pd atom is coordinated by the two N atoms of the benzimidazole ring and two Cl atoms in a centrosymmetric trans configuration. The $\mathrm{Pd}-\mathrm{N}$ distance in (I) compares well with the reported value of 2.005 (4) \AA, but the $\mathrm{Pd}-\mathrm{Cl}$ bond is significantly shorter than the value of 2.307 (3) \AA reported for trans-dichlorobis(2-methylimidazole)palladium(II) (Navarro-Ranninger et al., 1983).

The mean plane of the benzimidazole ring is nearly perpendicular to the Pd coordination plane, $\mathrm{PdCl}_{2} \mathrm{~N}_{2}$, forming a dihedral angle of $80.1(1)^{\circ}$. The bond distances and angles within the heterocyclic ring are in good agreement with literature values (Orpen et al., 1989).

In the phosphate group of (I), a deformation from the ideal tetrahedral shape is observed, especially in the $\mathrm{O} 2-\mathrm{P}-\mathrm{O} 4$ and $\mathrm{O} 3-\mathrm{P}-\mathrm{O} 4$ angles. Disorder was identified in both ethoxy groups of the phosphonic fragment. Atoms C31 and C32, and C41 and C42, were refined with equal site occupancies (see Experimental).

Atom N 2 in the molecule at (x, y, z) acts as a hydrogenbond donor, via atom H 2 , to atom O 2 in the molecule at $(1-x, y, z)$, so generating a $C(11)\left[R_{2}^{2}(14)\right]$ chain of rings (Bernstein et al., 1995) running parallel to the [011] direction (Fig. 2). The complete analysis of the hydrogen-bonding interaction is not possible because of the omission of the water molecule in the refinement of (I). The crystal packing of (I) is additionally stabilized by $\pi-\pi$ stacking interactions between partially overlapping benzimidazole rings across the inversion center at $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$. The perpendicular distance between the

Figure 1
The structure of the title compound, with the atom-numbering scheme. The second component of the disordered atoms (C31B, C32B, C41B and C42B) has been omitted for clarity. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii. Unlabeled atoms are related by the symmetry operator $(1-x, 1-y, 1-z)$.
centroid of the five-membered imidazole ring and the plane of the benzene ring is $3.420 \AA$, whereas the intercentroid distance is $3.822(4) \AA$. A view of the stacking is shown in Fig. 3.

Experimental

The title compound was prepared by the reaction of two molecular equivalents of phosphoric acid 1 H -benzimidazol-2-ylmethyl ester diethyl ester with one equivalent of $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ in methanol-water solution. The yellow product was recrystallized from ethanol, yielding single transparent crystals of (I) $\cdot \mathrm{H}_{2} \mathrm{O}$.

Crystal data

$\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=763.81$
Triclinic, $P \overline{1}$
$a=9.463$ (5) £
$b=9.638$ (2) A
$c=10.908$ (3) \AA
$\alpha=100.31(2)^{\circ}$
$\beta=115.10(3)^{\circ}$
$\gamma=100.64(4)^{\circ}$
$V=847.6(6) \AA^{3}$

$$
Z=1
$$

$D_{x}=1.496 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=15.3-24.7^{\circ}$
$\mu=0.85 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.50 \times 0.25 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku AFC-5S diffractometer ω scans
Absorption correction: analytical
(de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.723, T_{\text {max }}=0.905$
4131 measured reflections 3898 independent reflections 1608 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-12 \rightarrow 12$
$k=0 \rightarrow 12$
$l=-14 \rightarrow 13$
3 standard reflections every 150 reflections intensity decay: none

Figure 2
Part of the crystal structure, showing the $C(11)\left[R_{2}^{2}(14)\right]$ chain of rings parallel to the [011] direction. The B component of disordered atoms and H atoms not participating in the hydrogen-bonding have been omitted for clarity.

Refinement

Refinement on F^{2}
$w=\left\{\exp \left[3(\sin \theta / \lambda)^{2}\right]\right\} /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$\left.+(0.0494 P)^{2}\right]$ where
$w R\left(F^{2}\right)=0.120$
$P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=0.90$
$(\Delta / \sigma)_{\max }<0.001$
3898 reflections
$\Delta \rho_{\max }=0.51 \mathrm{e}^{-3}$
223 parameters
$\Delta \rho_{\min }=-0.41 \mathrm{e}^{-3}$
H -atom parameters constrained

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

$\mathrm{Pd}-\mathrm{N} 1$	$1.998(3)$	$\mathrm{P}-\mathrm{O} 4$	$1.527(6)$
$\mathrm{Pd}-\mathrm{Cl}$	$2.278(2)$	$\mathrm{P}-\mathrm{O} 3$	$1.553(4)$
$\mathrm{C} 2-\mathrm{C} 1$	$1.492(7)$	$\mathrm{P}-\mathrm{O} 1$	$1.555(4)$
$\mathrm{P}-\mathrm{O} 2$	$1.440(4)$		
$\mathrm{N} 1-\mathrm{Pd}-\mathrm{Cl}$	$90.22(13)$	$\mathrm{O} 2-\mathrm{P}-\mathrm{O} 1$	$110.3(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$107.6(4)$	$\mathrm{O} 4-\mathrm{P}-\mathrm{O} 1$	$108.6(3)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{O} 4$	$117.7(3)$	$\mathrm{O} 3-\mathrm{P}-\mathrm{O} 1$	$101.9(2)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{O} 3$	$116.8(3)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{P}$	$120.9(3)$
$\mathrm{O} 4-\mathrm{P}-\mathrm{O} 3$	$100.1(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{2}$	0.86	1.90	$2.749(6)$	171

Symmetry codes: (i) $1-x,-y,-z$.
There is a potential solvent-accessible volume of $39.3 \AA^{3}$ per unit cell. The symmetry-unique cavity is centered at $(0.0,0.5,0.5)$. Satisfactory refinement results were obtained when the disordered O atom was defined, but large displacement parameters of this O atom were observed. As an alternative strategy, the SQUEEZE function of PLATON (van der Sluis \& Spek, 1990; Spek, 2001) was used to eliminate the contribution of the electron density in the solvent region from the intensity data. The use of this strategy and the subsequent solvent-free model produced slightly better refinement results than the attempt to model the solvent atoms. Therefore, the solvent-free model and intensity data were used for the final results reported here. During the refinement of (I), the ethoxy groups revealed large atomic displacement parameters. Four atoms (C31, C32, C41 and C42), appeared to be disordered over two orientations with equal site occupancies (0.5). Similarity restraints were used in the refinement of the atomic displacement parameters of those disordered atoms. Moreover, bond-length restraints were applied to all $\mathrm{C}-\mathrm{C}$ bonds involving the disordered atoms. All H atoms were

Figure 3
A view of the molecules of (I), showing the partial overlapping of the rings due to intermolecular stacking.
placed in idealized positions $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{N}-\mathrm{H}=$ $0.86 \AA$) and constrained to ride on their parent atoms, with $U_{\text {iso }}=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ (or $1.5 U_{\text {eq }}$ for methyl C atoms). The low ratio of observed to unique reflections (41%) is the result of the poor quality of the crystals obtained.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2001); software used to prepare material for publication: PLATON.

This work was supported financially by the University of Łódź (grant No. 505/675 2004) and the State Committee for Scientific Research (KBN No. 3 T09A 138 26) (LCh and MM). The study was also supported by grant No. 503-316-2 of the Medical University of Łódź (UK and JO).

References

Al-Allaf, T. A. K. \& Rashan, L. J. (2001). Boll. Chim. Farm. 140, 205-210. Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bucknall, R. A. \& Carter, S. B. (1967). Nature (London), 213, 1099-1101.
Budzisz, E., Keppler, B. K., Giester, G., Wozniczka, M., Kufelnicki, A. \& Nawrot, B. (2004). Eur. J. Inorg. Chem. In the press.
Curić, M., Tušek-Božić, Lj., Vikić-Topić, D., Scarcia, V., Furtani, A., Balzarini, J. \& de Clercq, E. (1996). J. Inorg. Biochem. 63, 125-142.

Ferguson, L. R. \& Pearson, A. E. (1996). Mutat. Res. 355, 1-12.
Gumus, F., Algul, O., Eren, G., Eroglu, H., Diril, N., Gur, S. \& Ozkul, A. (2003). Eur. J. Med. Chem. 38, 473-480.
Gumus, F., Demirci, A. B., Ozden, T., Eroglu, H. \& Diril, N. (2003). Pharmazie, 58, 303-307.
Gumus, F., Pamuk, I., Ozden, T., Yildiz, S., Diril, N., Oksuzoglu, E., Gur, S. \& Ozkul, A. (2003). J. Inorg. Biochem. 94, 255-262.

metal-organic papers

Hawash, S. A., Badawey, S. A. \& Kappe, T. (1999). Pharmazie, 54, 341346.

Jakupec, M. A., Galanski, M. \& Keppler, B. K. (2003). Rev. Physiol. Biochem. Pharmacol. 146, 1-53.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Molecular Structure Corporation (1989). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX. 77381, USA.
Navarro-Ranninger, M. C., Martinez-Carrera, S. \& Garcia-Blanco, S. (1983). Acta Cryst. C39, 188-190.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-84.

Rigaku/MSC (2002). CrystalStructure.Version 3.10. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sigel, H. \& Kapinos, L. E. (2000). Coord. Chem. Rev. 200-202, 563-594.
Sluis, P. van der \& Spek, A. L. (1990). Acta Cryst. A46, 194-201.
Spek, A. L. (2001). PLATON. University of Utrecht, The Netherlands.
Tušek-Božić, Lj., Curić, M., Balzarini, J. \& de Clercq, E. (1995). Nucleosides Nucleotides, 14, 777-781.
Tušek-Božic, Lj., Matijašić, J., Bocelli, G., Sgarbotto, P., Furlani, A., Scarcia, V. \& Papaioannou, A. (1991). Inorg. Chim. Acta, 185, 229-237.
Wong, E. \& Giandomenico, M. (1999). Chem. Rev. 99, 2451-2466.

[^0]: (C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

